Transition of brain activation from frontal to parietal areas in visuomotor sequence learning.
نویسندگان
چکیده
We studied the neural correlates of visuomotor sequence learning using functional magnetic resonance imaging (fMRI). In the test condition, subjects learned, by trial and error, the correct order of pressing two buttons consecutively for 10 pairs of buttons (2 x 10 task); in the control condition, they pressed buttons in any order. Comparison between the test condition and the control condition revealed four brain areas specifically related to learning: the dorsolateral prefrontal cortex (DLPFC), the presupplementary motor area (pre-SMA), the precuneus, and the intraparietal sulcus (IPS). We found that the time course of activation during learning was different between these areas. To normalize the individual differences in the speed of learning, we classified the performance of each subject into three learning stages: early, intermediate, and advanced stages. Both the relative increase of signal intensity and the number of activated pixels within the four areas showed significant changes across the learning stages, with different time courses. The two frontal areas, DLPFC and pre-SMA, were activated in the earlier stages of learning, whereas the two parietal areas, precuneus and IPS, were activated in the later stages. Specifically, DLPFC, pre-SMA, precuneus, and IPS were most highly activated in the early stage, in both the early and intermediate stages, in the intermediate stage, and in both the intermediate and advanced stages, respectively. The results suggest that the acquisition of visuomotor sequences requires frontal activation, whereas the retrieval of visuomotor sequences requires parietal activation, which might reflect the transition from the declarative stage to the procedural stage.
منابع مشابه
Rapid visuomotor preparation in the human brain: a functional MRI study.
An important feature of human motor behaviour is anticipation and preparation. We report a functional magnetic resonance imaging study of the neuronal activation patterns in the human brain that are associated with the rapid visuomotor preparation of discrete finger responses. Our imaging results reveal a large-scale distributed network of neural areas involved in fast visuomotor preparation, i...
متن کاملThe Neural Signature of Subliminal Visuomotor Priming: Brain Activity and Functional Connectivity Profiles.
Unconscious visuomotor priming defined as the advantage in reaction time (RT) or accuracy for target shapes mapped to the same (congruent condition) when compared with a different (incongruent condition) motor response as a preceding subliminally presented prime shape has been shown to modulate activity within a visuomotor network comprised of parietal and frontal motor areas in previous functi...
متن کاملHomayoun as a Persian Music Scale on Non-Musician’s Brain: an fMRI Study
Introduction: The aim of this study was to get to a neurological evaluation of one of the Persian music scales, Homayoun, on brain activation of non-musician subjects. We selected this scale because Homayoun is one of the main scales in Persian classical music which is similar to minor mode in western scales. Methods: This study was performed on 19 right handed subjects, Aging 22-31. Here some ...
متن کاملExperience-dependent activation patterns in human brain during visual-motor associative learning.
Multiple brain regions, including parietal and frontal cortical areas, seem to participate in learning and rehearsing associations between spatially defined visual cues and appropriate motor responses. However, because most previous studies have related learning to changes in brain activation according to elapsed time or number of trials but not categories based on performance, it remains uncle...
متن کاملActivation of fast sleep spindles at the premotor cortex and parietal areas contributes to motor learning: a study using sLORETA.
OBJECTIVE The present study examined whether slow and/or fast sleep spindles are related to visuomotor learning, by examining the densities of current sleep spindle activities. METHODS Participants completed a visuomotor task before and after sleep on the learning night. This task was not performed on the non-learning night. Standard polysomnographic recordings were made. After the amplitudes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 5 شماره
صفحات -
تاریخ انتشار 1998